Improving the performance of physiologic hot flash measures with support vector machines.

نویسندگان

  • Rebecca C Thurston
  • Karen A Matthews
  • Javier Hernandez
  • Fernando De La Torre
چکیده

Hot flashes are experienced by over 70% of menopausal women. Criteria to classify hot flashes from physiologic signals show variable performance. The primary aim was to compare conventional criteria to Support Vector Machines (SVMs), an advanced machine learning method, to classify hot flashes from sternal skin conductance. Thirty women with > or =4 hot flashes/day underwent laboratory hot flash testing with skin conductance measurement. Hot flashes were quantified with conventional (> or =2 micromho, 30 s) and SVM methods. Conventional methods had poor sensitivity (sensitivity=0.41, specificity=1, positive predictive value (PPV)=0.94, negative predictive value (NPV)=0.85) in classifying hot flashes, with poorest performance among women with high body mass index or anxiety. SVM models showed improved performance (sensitivity=0.89, specificity=0.96, PPV=0.85, NPV=0.96). SVM may improve the performance of skin conductance measures of hot flashes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machines to improve physiologic hot flash measures: application to the ambulatory setting.

Most midlife women have hot flashes. The conventional criterion (≥2 μmho rise/30 s) for classifying hot flashes physiologically has shown poor performance. We improved this performance in the laboratory with Support Vector Machines (SVMs), a pattern classification method. We aimed to compare conventional to SVM methods to classify hot flashes in the ambulatory setting. Thirty-one women with hot...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

A SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy

Abstract In this work, a support vector machine (SVM) model was developed to predict the hot deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained from hot compression testing at different deformation conditions, were sampled. Consequently, a data base with the input variables of the deformation temperature, strain rate and strain and the output variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychophysiology

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2009